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Abstract

In this paper the combination of the Osher approxi-

mate Riemann solver for the Euler equations and vari-
ous ENO schemes is discussed for one-dilnensional flow.

The three basic approaches, viz. the ENO scheme us-

ing primitive variable reconstruction, either with the

Cauchy-Kowalewski procedure for time integration or

the TVD Runge-Kutta scheme, and the flux-ENO meth-
od are tested on different shock tube cases. The shock

tube cases were chosen to present a serious challenge

to the ENO schemes in order to test their ability:to

capture flow discontinuities, such as shocks. Also the

effect of the ordering of the eigenvalues, viz. natural or

reversed ordering, in the Osher scheme is investigated.

The ENO schemes are tested up to fifth order accu-

racy in space and time. The ENO-Osher scheme using

the Cauchy-Kowalewski procedure for time integration

is found to be the most accurate and robust compared
with the other methods and is also computationally effi-

cient. The tests showed that the ENO schemes perform

reasonably well, but have problems in cases where two

discontinuites are close together. In that case there are

not enough points in the smooth part of the flow to

create a non-oscillatory interpolation.

1. Introduction

The development of high order accurate, non-oscillatory

shock capturing schemes currently is an area of active

interest. High order accuracy is important for more

complicated unsteady inviscid problems and for direct
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simulation of compressible flows. It is fairly straightfor-

ward to incorporate high order accuracy in non-conser-

vative finite difference methods, however, shock cap-
turing will not be possible. Finite volume methods

and conservative finite difference methods, which re-

tain this property, are unfortunately limited to first or

second order accuracy in most cases. An important rea-

son for this limitation in accuracy is the use of Total

Variation Diminishing (TVD) methods to obtain non-

oscillatory solutions. TVD methods are limited to first
order accuracy in more than one dimension, Goodman

and Leveque 3, and even in one dimension they reduce

to first order accuracy at non-sonic local extrema, Os-

her and Chakravarthy 11.

Harten, Osher, Shu et al. 4,s,°,z,14,1s developed in recent

years the so-called Essentially Non-Oscillatory (ENO)
schemes, which do not have this limitation and have

uniform high order accuracy outside discontinuities. In

this paper the combination of the Osher approximate
Riemann solver and the various ENO schemes for the

solution of the Euler equations will be discussed. The

discussion will be limited to one-dimensional problems,

but important information for the development of multi-
dimensional ENO methods can be obtained from the

solution of several shock tube problems.

The main feature of ENO schemes is that they use an

adaptive stencil. At each grid point a searching al-
gorithm determines which part of the flow surround-

ing that grid point is the smoothest. This stencil is

then used to construct a higher order accurate, conser-

vative interpolation to determine the variables at the

cell faces. This interpolation process can be applied
to the conservative variables, characteristic variables

or the fluxes, either defined as cell averaged or point
values. The ENO scheme tries to minimize numerical

oscillations around discontinuities by using predomi-

nantly data from the smooth parts of the flow field.

Due to the constant stencil switching the ENO scheme
is highly non-llnear and only limited theoretical results

are available, Harten and Osher s and Harten et al. 4.



An important subject in the ENO schemes is the nu-

merical approximation of the fluxes at the cell faces.

The Roe approximate Riemann solver is frequently used,

while the Lax-Friedrichs flux splitting is preferred when

the differentiability of the flux is important. The Roe

scheme, however, requires a modification, because it

does not satisfy the entropy condition and allows steady

expansion shocks, whereas the Lax-Friedrichs scheme is

very dissipative. When using an exact Riemann solver
instead of the Roe approximation Harten et al. 6 ob-

tained better results, while also the results of Shu and

Osher 14,1s improved with a better flux approximation.

The Osher scheme, which is the most accurate approx-

imate Riemann solver available, has some nice proper-

ties, which might improve the accuracy of t_NO schemes.
Until now the combination of the Osher and ENO scheme

has not been investigated. Compared with the Roe
approximate Riemann solver the Osher scheme is less

popular due to the higher cost of computing the fluxes

and the fact that it is more comphcated than the Roe

scheme. When using a higher order ENO scheme the
cost of the Riemann solver, however, becomes less dom-

inant, because the ENO interpolations themselves are
quite expensivel especially for multi-dimensional prob-

lems. In addition a careful implementation of the Osher
scheme does not have to be too expensive. The use of

the Osher flux splitting has some additional benefits. It

has a very low numerical dissipation in boundary lay-

ers compared to other Euler schemes, see for instance

Koren s. Although beyond the scope of this paper this

is an important consideration in the approximation of

the inviscid contribution when solving the compress-

ible Navier-Stokes equations for flows with both strong

shocks and boundary layers by means of direct simu-

lations. The possible application of ENO schemes in

direct numerical simulations of compressible flow is the

reason that the ENO schemes are tested up to fifth or-

der accuracy.

As already mentioned there ate various ways to con-

struct ENO schemes. A good comparison of the dif-

ferent approaches unfortunately is lacking and will be
part of this paper, with special empha'sis on the combi-
nation of the Osher and ENO schemes. Several difficult

shock tube cases are computed, which present a serioils

challenge to ENO schemes. In addition the effect of the

ordering of the eigenvahes in tlie Osher scheme will be

investigated, which is one of parameters which might

effect the accuracy of the schemes. This comparison

gives valuable information which of the approaches is
the most successful. In the next section first a brief dis-

cussion of the Osher scheme for the Euler equations will

be given. Next the construction of'the various Osher-

ENO schemes will be discussed and results of several

shock tube tests will be given at the end of the paper.

2. Osher Scheme

The Osher-ENO scheme is used to solve the Euler equa-
tions of gas dynamics, which are defined as:

ut+f(u)_=0 t>0,-ec<x<oc

(2.1)

with initial data: u(x,0) = uo. The vectors u and

f are defined as u = (p, pu, e) t and f = (pu, pu _,(e +
p)u) t. Here p, u, e and p represent the density, velocity,

total energy and pressure respectively. The Jacobian

matrix Of has real eigenvalues Ai, (A' = u - c, u, u + c),

with c the speed of sound, and has a complete set of

eigenvectors r i.

The system of equations (2.1) is completed with an

equation of state for an ideal gas, p = pRT, with R

the gas constant, and tlre relation between total energy

and temperature, T = e/(pc_,) - 1 25u , where c_, repre-
sents the specific heat at constant volume.

Let u_ = u(z_, t'_), zi = jh; t _ = nr, with grid spacing
h and time step r, then the conservative first order

approximation to the Euler equations can be written
as:

rt_'+I = u_ - A(hi+ ½ - hi_½) (2.2)

with X = T/h. The flux h at a cell face with index i+
in the Osher scheme now is defined as:

hi+½

with P_ a path in phase space. The matrices Of ± are

defined as: 0f A = SA+S -1, with S -1 the matrix with

right eigenvectors r _ as columns, and

A ÷ = diag(max(0, A')) ; A- = diag(min(0, A')). Here

diag is short for diagonal matrix. In the construction

of the flux-ENO scheme we will also use the expression
for the flux differences:

h,+½-h,_½ :fr Of+du+fr Of-du (2.4)

By choosing a specific path in phase space, namely

du__Z= ri(s), Osher was able to derive explicit expres-ds
sions for the integrals in equations (2.3-4) by separating

the integrals along I '_ into three parts. Along each path

Pi one eigenvalue A' is constant and has a related set

of Riemann invariants, Al's : _b = {u-t- 2_ _) and

A2 : _b : {u, p}. These Riemann invariants _b are used

to determine the intermediate states by linking them

to rl i and ui+l, which are the end points of the path
r',. The order in which the eigenvalues are used in the



computationof thepathintegralsalong P, is impor-

tant. The order (u - c, u, u + c) is called the natural

order, whereas (u+c, u, u-c) is the reversed order. Os-
her and Solomon ° were able to prove that the reversed

order admits steady shocks in at most two points and

satisfies the entropy condition, which guarantees con-

vergence almost everywhere to the solution of the Euler

equations in the limit h --_ 0, r ---* 0.

The integrals along each path can be computed using
the fact that the eigenvalues are either genuinely non-

linear, (Vu Ai • r i = 1), or linearly degenerate, (_TuA i -

r i = 0). In the first case )t can have at most one zero

on each path and in the second case it has no zeros. If

there is a zero on a path, then the path integral has
to be modified to treat the sonic point. The careful

treatment of sonic points eliminates the possibility of

expansion shocks which appear in the Roe method and

also gives a differentiable flux vector.
The Osher scheme uses simple waves to solve the Rie-

mann problem, which become multivalued in a shock.

For an analysis of this phenomenon see Van Leer 1¢

and Dubois 2. More details about the implementation

of the Osher scheme and explicit expressions for the

flux integrals can be found in Osher and Solomon 9,

Chakravarthy and Osher 1 and Rai and Chakravarthy 13.

3. ENO Schemes

ENO schemes overcome the limitations ofTVD schenaes

by relaxing the requirement of total variation non-increa-

sing. They are conservative, essentially non-oscillatory

and give uniform accuracy in smooth regions, without

the degradation of accuracy at non-sonic local extrema
as observed with TVD methods. There are several

approaches possible when constructing ENO schemes.
I-Iarten, Osher, Engquist and Chakravarthy 6 use the

ENO scheme to construct a higher order solution to

the cell-average of equation (2.1) using a sliding aver-

age, defined as:

1/]u(_,t) = g _ u(_ + y,_)dy (3.1)
_r

Integrating equation (2.1) over the domain [x__ _, x,+½]
gives:

0 1 h h

- + _[f(u(x + _,_u(_,t) t))-f(u(_- , t))] : 0 (3.2)

with grid spacing h. When considering this equation at
the point z = zi, the cell center, this gives the method

of lines formulation for the cell average _(z,,t). Inte-
grating in time finally gives the cell averaged equation:

K(z,,t + r)=_(zi,t)- A[h(z,+½,l;u) h(z,__,g;u)]
(3.3)

with A = r/h and

f0 "
h(z, t; u) = _1 f(u(z, t + ,1))dr/ (3.4)

T

The numerical flux in the ENO scheme from Harten et

al. now is constructed such that it approximates the

exact flux up to O(M):

U? +1 - [Eh(r)'Un]i = O(h _) (3.5)

with "Eh(r) the numerical solution operator. The ENO

scheme of Harten et al. therefore gives an r-th order

accurate approximation to the cell averages. The most

important ingredient of their ENO method is the recon-

struction of the point values u(z) from the cell averaged

values _i. These point values are necessary to compute

the flux h,+½ at the cell faces. This is done with a
reconstruction method, discussed in the next section,

such that the pieeewise polynomial R(x,_) is conser-

vative, viz. R(zi,_) = _,, essentially non-oscillatory,

TV(R( • ;_)) < TV(_)+O(h'), and gives at all points

in a neighborhood around xi an r-th order approxima-

tion to u, when u is smooth. The time integral, equa-

tion(3.4), then is computed using the Cauchy-Kowalew-

ski procedure for hyperbolic systems and is discussed
in the next section. This method has as benefit that it

couples the spatial and temporal discretization.

In an alternative approach Shu and Osher 14'1s con-
structed the numerical solution directly from equation

(3.2), with x = xi, using a correction to the fluxes,

obtained by a Taylor series expansion around the cell

center xi.

+ O(h :re+l)
fi,+½ = hi+½ + a=_ a2dd k \_ '+½

(3.6)

Here hi± _ is the flnx obtained with any first order con-
. T'_

servatxve scheme. The first few coefficients are: a2 =

1, a4 = 5_60"" "' This procedure makes the conser-
vative formulation higher order accurate. This method
is essentially a finite difference method and not a finite

volume method, because _(x,, 1) is now considered as a

point value in the Taylor series expansion instead of a

cell average. It is a generalization of the high resolution
TVD schemes proposed by Osher and ChakravarthyIL

In their second paper Shu and Osher rs demonstrated

that it is possible to construct a higher order method by

reconstructing the fluxes directly from the fluxes com-

puted from the cell averaged values without using this



formula. In this case the variable _ should be consid-

ered again as a cell averaged variable. This approach
is used in section 3.2 for the flux-ENO method.

The time integration is performed using a new Runge-
Kutta scheme which does not increase the total vari-

ation in time. This approach has as benefit that the

spatial and temporal discretization are decoupled. This

results in a simpler coding, but increased cost because

the reconstruction, which is the most expensive part of

the ENO schemes, has to be done at each stage of tile

Runge-Kutta scheme.

A hybrid approach is also possible, namely using the
ENO scheme from Harten et al., but with the TVD

Runge-Kutta method from Shu and Osher instead of

the Cauchy-Kowalewski procedure for time integration.
This method saves the cumbersome derivation of the

higher derivatives of the solution but still does the ENO
reconstruction on the primitive variables instead of tile

fluxes, which is generally more accurate. Results of this

approach will be presented at the end of the paper.

The main benefit of the original point ENO method

of Shu and Osher is that it is easy to extend to more

dimensions using dimension splitting. Although in this

way a higher order method, is obtained ill practice it

has a strong bias to the principle directions of the grid,

which seriously degrades the accuracy. The approach

of Harten et al. will give uniform higher order accuracy

with a minimal grid dependence, but at significant cost
and complexity, see Harten and Chakravarthy 7'.

3.1 ENO-Osher scheme based on reconstruction [rom
cell averaqed variables

The implementation of the Osher scheme in the ENO

method from Harten et al. 6, which uses a reconstruc-

tion from the cell averaged variables is straightforward.
Only the Riemann solver has to be replaced with the

Osher approximate Riemann solver, discussed in sec-

tion 2. For completeness, however, a sununary of this

algorithm will be given. More details can be found in

Harten et al. B. The first step ill the ENO reconstruction

is the determination of the primitive function U(xi+ })
from the cell averaged variables:

i

U(x,+½) = E(zz+} - xl_ ½)_i z (3.1.1)
/=0

A higher order polynomial representation of U in each
cell is now constructed by deterlnining the divided dif-

ferences used in the Newton interpolation method using

the following recursive algorithm: Start with k .... =

1 and k,nax = i-4- ½, and the divided differences:i-]

I-I[zi_½]=U(xi_½); H[xi_½,xi+½] (3.1.2)

If the divided difference H[xi_], x,_½,xi+½] is larger

than H[z,_½, z,+½, xi+_] choose

H[;ri_{, zi+½, zi+]] and km_ = zi+}; otherwise

H[zi_],z i _,zi±, ½is accepted and kmin = z i _. This
• --_ T_ . . --_

process Is repeated till the reqmred order of the interpo-

lation is obtained and applied to each component of U

independently. It will give the interpolation of U and

the stencil [kmi,, k,,_]. Here the divided differences
are defined as:

H[x_+½,..-,xi+k+½] = (H[xi+_,..- , xi+k+½]-

H[zi+_],.-., xi+k_½])/(X,+k+ ½ - xi+½)

(3.1.3)

After the determination of the coefficients of the New-

ton polynomial it is straightforward to obtain the point

values by differentiation of the Newton interpolation

polynomial, because u = _-_U. This process is greatly
simplified using the algorithm discussed in the Appendix
in Harten et al. °, which transforms the Newton poly-

nomial representation into a series expansion around

,Ti:

r-I

R(z;ii) = E b,,_(x - x,) k (3.1.4)
k=O

This process gives a representation of the solution in
each cell and can be used to determine the values of

u at the cell faces x,+½. The values at the left and
right side of the cell are now used in the Osher ap-

proximate Riemann solver, which gives the fluxes f,+½.
This reconstruction process can be applied directly to

the conservative variables, but in order to minimize the

interactions between the different equations it is prefer-
able first to transform ii to characteristic variables and

transform back after the reconstruction.

The method of lines approach can now be followed,

solving equation (3.2), with the TVD Runge-Kutta met-

hod, or the Cauchy-Kowalewski procedure can be used

to solve equation (3.3). The TVD Runge-Kutta method

is an r-th order, _ stage Runge-Kutta method defined
as:

i-I

U(i) _ E [(2iku(k) -]-_kTL(ll(k))] '

k=0

with

U (0) = U n, U (_-) = U n+l

i = 1,..-v

(3.1.5)

(3.1.6)

Here L represents the spatial discretization operator.

For the coefficients a, _ see Shu and OsheP 4. The

TVD Runge-Kutta method has as main benefit that it



doesnot increase the total variation during tile time

integration step.

The alternative is to use equation (3.3) and compute

the integral, equation (3.4). This integral is diseretized
by means of a Gaussian quadrature formula:

r K

k=0

(3.1.7)

The values of u(x,+!,/3kr) are now determined using
2 ....

the Cauchy-Kowalewskl procedure, wMch is essentially

a Taylor series expansion around the point (x,, t'_):

,-1 z alu(=,, t") (= - =,)k ,l-k
OxkOtl-_

l--0 k--0

(3.1.8)

The derivatives _ can be obtained by differen-

tiation of the original differential equation (2.1) and
c0_u

using the coefficients bit which are equal to b-Tr'

cqu(z"in) - bit;
cgzI

0 <l<r-1 (3.1.9)

3.20sher fluz-ENO method

The Osher flux-ENO method is constructed using the

flux difference relation for the Osher scheme, equation

(2.4). The ENO reconstruction is applied directly to

the fluxes in a conservative way, as proposed by Shu and

Osher is. The reconstruction is, however, more compli-

cated due to the path integrals in the Osher flux, equa-

tion (2.3). Define the flux f in a cell centered around

xi as f = f=='+} g(_) then f satisfies tile relation
s--_r

f(u,) = F(z,+½) - F(z__½))/h (3.2.1)

with the primitive function F defined as:

F(z) = fo_ g(_)d_. The conservative flux difference for
a cell with index i then can be determined directly from
the primitive function F, which is determined with the

ENO reconstruction technique. The flux-ENO recon-

struction is now applied directly to the positive and

negative fluxes in the Osher scheme, defined as:

df_+½ = fr, Of_=du (3.2.2)

These relations, cannot be used directly because the

primitive functions F + are not known, nor the fluxes f+

themselves. Their explicit form, however, is not needed,

only their divided differences which can be linked to
df ± by means of the following relations:

df++] = f+ - f+l

: F+[z,+½, z,_½]- F+[z,_½, z,_}] (3.2.3)

= (xi+½ - zi_})F+[xi+½,xi_],x,__]

with all equivalent relation for df_-+½:

dfi+½ = f,:_, - f;

= F-[zi+}, x,:+½] - F-[xi+½, x,_½] (3.2.4)

= (x,+] - zi_½)F-[xi+],zi+½,z,_½]

Here F±[z0,...,Zk] represent the k-th divided differ-

ences of F +. These relations automatically introduce

upwinding for the positive and negative wave direc-

tions. Higher order approximations can be obtained
by extending the divided difference tables of F ±, us-

ing the following recursive algorithm for tile positive

flux, which is slightly different from the one discussed
in section 3.1.

Start with km_,_ = i. If the divided difference

F:[Zk_,-[_,_½,... , a_/cllT,_,+t - ½] is larger than

F+[=_7,__],... , zkl_,_,+: - _] choose

F+[zk_:))_},........ ., zk_:,_,+:_ _],,,, and k,nin = k .... - ]

else F+[zk!,_,__ ½,...,,,,. Xk_;S,,+l - ½] is accepted and k..n
remains unchanged. This process is done for all the

components k of the flux vector f+ during each in-

terpolation step I and continued up to the required

order. The following Newton polynomial now can be
constructed:

k,,,:,t,÷,-,

P(t)(a:) = P_'-')(z) + c_') 1-[ (z - z,_½) (3.2.5)

where c(kt) is the divided difference accepted in the l-th

interpolation step. A similar algorithm is used for the

negative fluxes f- with k,,_i,, = i, replaced by km_. =

i+ 1. Here kmin is the left most stencil of the grid cen-

tered around point i; whereas p_0 represents the /-th

order Newton interpolation polynomial. The index k

refers to the application of the ENO reconstruction to

each component of the flux vectors f_ independently.

This algorithm automatically chooses the smoothest

{k,_i. , , + l - 1},possible interpolation stencil: + ... km,,_±

independently for each component of the positive and

negative fluxes. By continuously comparing the divided

differences, obtained by adding one point to the left

and one to the right, it is decided which one gives the



smoothestinterpolation.Addingthepositiveandnega-
tivefluxes,andusingtherelationforthefluxdifference
fortheOsherscheme,equation(2.4),nowgivestheflux
differenceforthecellwith indexi:

hi+½ _ hi_} dp_ d= d, + GP,+_½1 =x,_½
(3.2.6)

The time integration is accomplished using the TVD
Runge-Kutta scheme of Shu and Osher 14, discussed ill

the previous section.

The use of the relations

df++½ = fi+l - h,+½ (3.2.6)

df_-+½ = h,+½ - f,

to obtain the positive and negative fluxes, as suggested

by Shu and Osher 14, without presenting an application
in their paper, does not give a higher order scheme.

The reason is that this relation is based on the average

of a forward and backward flux, which is o111)' a second

order accurate approximation to h,+½. In order to ob-
tain higher order accuracy this average will have to be

replaced by a higher order interpolation, which would

require an additional reconstruction step.

4. Discussion and Results

To test the combination of the different ENO schemes

and the Osher scheme several shock tube calculations

were performed. The cases were cliosen to test the

schemes for the various types of discontinuities which

exist as solutions of the Euler equations, viz. shocks,

contact discontinuities and expansion waves. The ini-

tial conditions were kindly provided by F. Coquel and

are summarized in Table 1. They were designed to

be severe tests for shock capturing schemes and are
helpful in detecting possible flaws in the different ENO

schemes. For all cases the three possible ENO schemes,

viz. ENO with primitive variable reconstruction, with

either the Cauchy-Kowalewski procedure for time inte-

gration (ENO-CK) or the TVD Runge-Kutta method
(ENO-RK), or the reconstruction applied directly to

the fluxes (ENO-FL), were tested. The number of grid
points was i62and maximum CFL number .8. iii Some

cases the CFL number had to be reduced due to nu-

merical instabilities, namely case B with ENO-RK and

case E with ENO-CK required a CFL number .1 for

4th and 5th order accuracy, wherdas for all schemes
the maximum CFL number had to be reduced to .6 for

5th order accuracy. All methods were tested with spa-

tial accuracy ranging from first order up to fifth order.

The time accuracy was always equal to the spatial accu-
racy for ENO-CK. For ENO-RK and ENO-FL the time

accuracy was limited to third order. The TVD Runge-
Kutta scheme becomes rather awkward for fourth and

higher order accuracy. It has a strong CFL limitation,

requires a large amount

PL UL TL Pn Un Tn

[g/m 2] [m/sec] [K] [Y/,n _] [,n/sec] [K]

A 15000 0 1378 98400 0 4390
B 988000 0 2438 9930 0 2452

C 10000 0 2627 100000 0 272

E 573 2200 199 22300 0 546

Table 1. Initial conditions shock tube cases

of temporary storage and is not practically usefld. In

addition to testing the various ENO schenres also the

effect of the ordering of the eigenvalues in the Osher

scheme has been investigated. For code validation pur-

poses several of the cases presented by Harteu et al. _,

such as Sod's problem were computed and compared
well with their results.

The first case, labeled A in Table 1., consists of a left

moving shock, followed by a contact discontinuity and

a right moving expansion wave. In all the plots the
continuous line is the exact solution while the lines with

dots and triangles represent the numerical results. The

vertical axis of one curve was shifted upwards to make
the differences between the various methods more clear.

All plots, except Fig. 9, show the results using the

reversed ordering of eigenvalues in the Osher schenre.

in Fig. 1-3 results of the various methods for 2nd and

5th order accuracy are presented for the density pro-

file. The density is the critical variable in this problem,
because of the contact discontinuity. This means that

points in the region between shock and contact discon-

tinuity have a discontinuity in both directions, which
is the worst possible case for an ENO scheme, because

ill both directions the reconstruction will always have

to cross a discontinuity for third or higher order re-

constructions. Due to the extremely low dissipation of
the higher order schemes these numerical oscillations,

created in the initial stages when there are not enough
points in the regio_i between the two discontinuities to

build a higher order non-oscillatory reconstruction, will
remain in the solution. It is clear that ENO-CK is su-

perior in this region, while ENO-RK still gives a rea-

sonable result, although the method is slightly nrore
dissipative than ENO-CK and has a small overshoot.

The ENO-FL reconstruction, however, has strong oscil-

lations for third and higher order in the region between



the shock and contact discontinuity. Pressure and ve-

locity are monotone for all schemes and different or-

ders of accuracy. All methods represent the region be-

hind the contact discontinuity and the expansion wave

equally well and no major differences exist between the

reversed or natural ordering of the eigenvalues in the
Osher scheme. It should be borne in mind that due

to the fact that the solution of the Riemann problem

is self similar only first order accuracy is possible and

the shock tube tests merely show that solutions with

higher order methods can be obtained without numer-
ical oscillations. Test of all methods on free convection

problems, however, showed that all methods reached

the proper order of accuracy. Higher order methods,

especially ENO-CK, however, still give a better solu-
tion than first order methods for flows with disconti-

nuities. Especially the smearing in the region between
the shock and contact discontinuity reduces.

The second test, case B, is different from case A in that

it has a sonic point in the expansion wave. The first or-

der solution therefore has an O(Az) expansion wave at

the sonic point, but does not need an entropy fix as does

the Roe method. This discontinuity is stronger for the

natural order than for the reversed order of eigenvalues
in the Osher scheme. The disturbance is about twice

as large for the natural order and although greatly re-

duced for higher order methods it consistently slightly

reduces the accuracy in this area, when using the nat-

ural order. This is a general conclusion for all cases

with a sonic point. Both ENO-CK and ENO-FL work

reasonably well, with ENO-CK, with reversed order of

eigenvalues, superior, as can be seen in Fig. 4-5. The

flux-ENO method experiences a small jump around the

sonic point due to the limited differentiability of the Os-

her flux at this point. This problem would require ad-
ditional attention when using the flux-ENO method to

obtain uniform high order solutions, but for the com-

parison of different ENO methods it is not relevant.

The ENO-RK method experienced serious oscillations

at the beginning and end of the expansion wave, Fig. 6,
and was unstable for fifth order accuracy, when using

the natural ordering. Both natural and reversed order

became oscillatory, but the natural order turned out to

be more sensitive in general. In cases of instability the

differences, however, were not large enough to prefer
one method for the other. The other two methods also

experience small problems at the bottom of the expan-

sion wave, but much less severe. A clear explanation for

this phenomenon still is lacking and will require fiLrther
research.

The third problem, case C, has as Inain feature a strong
contact discontinuity. The different

Order ENO-FL ENO-CK ENO-RK

2 1. 1.13 2.15
3 1.70 1.73 3.68

4 1.91 2.07 4.15

5 2.13 3.12 4.62

Table 2. Comparison CPU time of different
ENO schemes

schemes behave similar in the region with the expan-

sion wave as in case B, with the reversed order slightly

better around the sonic point. All methods experience

a small undershoot in the region between the contact

discontinuity and the expansion wave, with ENO-CK,

Fig. 7, the most accurate and ENO-FL has some high

frequency oscillations, see Fig. 8. The smearing of

the contact discontinuity is approximately equal for all

methods, but slightly reduces with higher order accu-

racy. Contrary to case B, ENO-RK now does not ex-

perience instability problems.

The final test, case E, which consists of two strong

shocks moving in opposite directions is the most dif-
ficult case. The first order Osher scheme with natural

ordering of eigenvalues is not monotone and has a sig-
nificant overshoot in density, pressure and velocity at

the first point behind the left moving shock, Fig. 9.

The Osher scheme with reversed ordering is monotone.

All ENO schemes are already oscillatory for second or-
der accuracy. The second order ENO-CK scheme, with

reversed ordering of eigenvalues experiences some small

oscillations in the pressure behind the shock, Fig. 11,

but the density still is nearly monotone, Fig. 10. The
reason for the oscillations are the same as those dis-

cussed for case A. In the initial stages there are not

enough points between the two shocks to build a non-
oscillatory reconstruction. This phenomenon is, how-

ever, stronger for case E than for case A, because this

problem only occurred in case A for the density which

had a region separated by a shock and contact discon-

tinuity, but not for the other variables. When a region

is separated by two shocks also the pressure and veloc-

ity are discontinuous. Contrary to the expectations the

second order flux-ENO method, which was oscillatory

for case A now is nearly monotone. All ENO schemes

are oscillatory for third and higher order, as can be seen

in Fig. 12-13.

The choice between the different ENO methods is not

only determined by its accuracy but also by its numer-

ical efficiency. Table 2. shows the relative CPU time
for the different methods. The flux-ENO method is

the least expensive, but the ENO-CK scheme is nearly

equal up to ,t-th order. The difference at 5-th order



.

2,

is caused by the fact that the other two schemes only
use the third order accurate TVD Runge-Kutta scheme,
while ENO-CK also is fifth order accurate in time. Ta-

ble 2 also shows that the ENO-RK scheme is signifi-

cantly more expensive and requires approximately twice
as much CPU time.

5. Conclusions

In all cases the ENO-CK method, with reversed order-

ing of eigenvalues in the Osher scheme, was superior

or performed equally well as the other ENO schemes

and is the most robust. The ordering of eigenvalues in

the Osher scheme is not extremely critical. The natu-

ral ordering, however, has a larger jump around a sonic

point, which slightly reduces the accuracy of higher or-

der approximations. The natural ordering also expe-

riences a slightly larger level of numerical oscillations

than the reversed ordering, hi cases were the first order

scheme with natural ordering is not monotone it is not

possible to build higher order non=oscillatory schemes.
This stresses the importance of a good approximaie
Riemann solver.

The ENO method, with TVD Runge-Kutta time inte-

gration, is more dissipative and less robust than the

ENO method with the Cauchy-Kowalewski procedure

for time integration. Although it requires a signifi-

cant effort to derive all the higher order derivatives
for a multi-dimensional problem, it certainly pays off

when one considers the fact that the TVD Runge-Kutta

method requires multiple reconstructions, which are the

most expensive part of the algorithm, and significant

larger storage. The flux-ENO method, although hav-

ing the benefit of being the most easy to program, and

fairly straightforward to extend to multiple dimensions

does not have the robustness of the primitive variable
reconstruction.
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Figure 1. Case A, density at t = .2, 2nd (dots) and

5th order (triangles) ENO-CK.
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Figure 4. Case B, density at t = .2, 2nd (dots) and
5th order (triangles) ENO-CK.
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Figure 2. Case A, density at t = .2, 2nd (dots) alld
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Figure 5. Case B, density at _ = .2, 2nd (dots) and

5th order (triangles) ENO-FL.
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Figure 3. Case A, density at t = .2, 2nd (dots) and

5th order (triangles) ENO-FL.
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Figure 6. Case B, density at t -- .2, 2nd (dots) and
5th order (triangles) ENO-RK.
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Figure 7. Case C, density at _ = .5, 2nd (dots) and

5th order (triangles) ENO-CK.
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Figure 10. Case E, density at t = .6, 2nd order ENO-

CK (dots) and ENO-FL (triangles).
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Figure 8. Case C, density at ! = .5, 2nd (dots) and

5th order (triangles) ENO-FL.
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Figure 11. Case E, pressure at i = .6, 2nd order

ENO-CK (dots) and ENO-FL (triangles).
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Figure 9. Case E, density at _ = .6, 1st order Osher

scheme, natural (triangles) and reversed order (dots).
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Figure 12. Case E, density at t = .6, 3nd order ENO-

CK (dots) and ENO-FL (triangles).
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